5x^2+4=20

Simple and best practice solution for 5x^2+4=20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x^2+4=20 equation:



5x^2+4=20
We move all terms to the left:
5x^2+4-(20)=0
We add all the numbers together, and all the variables
5x^2-16=0
a = 5; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·5·(-16)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*5}=\frac{0-8\sqrt{5}}{10} =-\frac{8\sqrt{5}}{10} =-\frac{4\sqrt{5}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*5}=\frac{0+8\sqrt{5}}{10} =\frac{8\sqrt{5}}{10} =\frac{4\sqrt{5}}{5} $

See similar equations:

| 175+2.50x=1875/3 | | t+51/5=-6 | | -3v+20=-16-9v | | (20-9)2-3x2= | | 5x-17+4x+17=x | | 2(x+4)+3x=8+3(x-4) | | 6.66=2(w+0.6) | | -4+16=58+3x | | 3-x+7x-3=-31 | | -19n+6=17n-14 | | 90=26+2j | | 5a+3–3a=−7 | | 10t=-10t(t-4) | | x+.35x=7943 | | 175+2.50x=1700 | | 19-19j=1-20-17j | | 2(3x-1)-21=43 | | 12x=10x+15 | | 5p=2,5 | | -6y+2/5=-7/3y-6/5 | | g3=10 | | y=64-10 | | 2x+14=4+4x | | 3x+36=6+5x | | -3x+7x-3=-21 | | 2x-5x-10=-3x+7-10 | | 4(-2-9.2x)=3(2-7x) | | 50z=1050 | | 5(n+6)=-15 | | -5x-1.4=4x | | 6x-3x+1=1x-7-12 | | -7(-4u+2)-4u=6(u-3)-8 |

Equations solver categories